Archive for the ‘Fitness’ Category

Sorry, I can’t tell you

31/07/2014

Sorry to be annoying but there are a few things I can’t tell you in this post – such as who, where and when. And I can’t show you any pictures. But I can tell you what.

Last week, having done a respectable few road miles including a surprising 20% climb, I caught the train.

Opposite me was a guy who looked about the same age and he had a well-appointed 29er. He told me where he’d ridden from that day and I suggested it was about 80 miles away.

He looked blank and said he hadn’t done the sums but yes, it had been off-road all the way. He was training.

He was a little disappointed with his training ride because he’d been trying to keep his average speed down to 7.3 mph but hadn’t got it below 7.8 mph.

Most of us train to cycle faster so what kind of training, I asked, involves trying to keep your average speed down?

Long distance, he said.

How long is long distance?  I asked.

400 miles, he said.

Off road, he said.

Non-stop, he mumbled.

Right, I said.

“Are you insane?” I thought, but didn’t utter.

Some time soon he’s going to spend 52 hours pedalling, while eating, drinking and sleeping, his way across 400 miles of rough tracks, up thousands of feet of ascents and down thousands of feet of descents. He’s going to do it because it’s not been done before and he likes a challenge. He might not succeed.

Either way, at some point soon, I’ll be able to tell you more, about who he is, where he was riding, when and how he got along.

Until then, I’m going to respect his modesty and his own, mistaken, belief that nobody would be interested in him.

But please, even though you don’t know much at all about his inhuman escapade, do wish him luck. That’s the least he deserves.

Don’t tell the fat old man

02/07/2014
Screen shot 2014-07-02 at 14.50.42

That’s not me at the front and that’s not a fat old man behind.

It’s been a tough few weeks, trying to ride as much as possible in between work. It was made tougher by the appearance of a ‘fat old man’ on the track each morning, arriving earlier than me and leaving later. It got tougher still when I learned that he’s not fat and he’s younger than me.

Then he had the nerve on Monday to sit on my wheel for 20 minutes while I pushed the air aside as fast as I could. Afterwards, as I ‘warmed down’, he slid past and thanked me for providing shelter from the wind. Polite, yes, but somewhat galling. I could’ve done with some aerodynamic help myself, I thought.

The next day I got a copy of new research into just how beneficial wheelsucking can be. It contained the most dramatic figures I’ve yet seen. OK, they were obtained from experiments with dummies in a wind tunnel and shouldn’t be confused with the real world, but they blew me away.

Under ideal conditions, say the Australian researchers, a rider tucked in behind a leader can reduce their drag by 49%. That’s huge. I’m not saying we were in the ideal conditions on Monday morning but it did, then, seem even more unfair if the ‘thin young man’ might have almost halved his drag by tucking in behind me.

Mind you, the same research confirmed that by riding close to my rear wheel, he would also have smoothed my wake, reducing my own drag by a useful 5%. So maybe that’s why I did achieve my fastest average speed yet this year.

Whoosh! The truck pushes more air right in your way

Whoosh! The truck pushes more air right in your way

The scientists did some neat research into what happens to the aerodynamics when two cyclists are riding bit and bit, taking turns at the front. You know that feeling you get when a truck overtakes, of being shoved backwards by an invisible maw? Well, the same happens when a rider comes out of the slipstream and draws level with their mate. The drag on both riders increases.

Not that I’m going to tell any of this to the ‘thin young man’. Why should I help him any more? It’s about time he took his turn at the front.

For more info, see The effect of spatial position on the aerodynamic interactions between cyclists by Nathan Barry, John Sheridan, David Burton and Nicholas A.T. Brown

Better out than in?

27/01/2014

Is it more effective to train outdoors than in?

In 2003 a woman with Parkinson’s Disease was the stoker on the back of tandem. To keep the pace being set by the male captain, she had to pedal much faster than was easy for her during the ride across Iowa. The happy result was that the symptoms of her degenerative disease were lessened significantly.

Since then, repeated intense exercise has been considered a good way to mitigate the debilitating symptoms of Parkinson’s Disease.

One result is that patients have been encouraged to work out on stationary bikes in gyms. As many cyclists know, this experience just doesn’t compare to riding the open road. It lacks the movement, fresh air and engagement with the real world that is afforded by a real spin.

Now research has shown that intensive cycling hard out on the road could benefit a person with early Parkinson’s Disease more than the same level of exercise on a gym bike.

Why is this?

“If person’s living with Parkinson’s were to be free to ride safely on a recliner bike or tandem bike, the external cues of other people on the bike trail and wildlife may do more for the person and their disease than riding on a stationary bike at home,” says Megan Joanna Avilla, in her Masters thesis, Acute effect of intense exercise on rhythmic gait in persons living with early Parkinson’s Disease.

She may be right. The experience of changing scenery, moving air, seeing people and sensing the environment might enhance the physiological effects of exercise.

If Megan Joanna Avilla’s thesis is correct, does it mean that all outdoor training for any cyclist is more effective than exactly the same exertion on rollers indoors? Do our bodies get fitter by riding through the open air than within four walls?

The implication for all cyclists, including those without Parkinson’s Disease, is that working out could be better than working in.

How much better? Has this been tested? If not, I volunteer (weather permitting).

training ride

Better out?

gym bike

Than in?

The Lessons of 2013

28/12/2013

Every week I scan the abstracts of about 25 new papers published in peer reviewed journals and by universities. Sometimes I have access to complete papers.

They are all relevant to cycling and I try to stick to the one that have some basis in, or relevance to, science. Considering I read only those written in English, ones that cross my radar and ones that I have any hope of understanding, clearly there’s a lot out there that I miss. Nevertheless, the pickings are rich and diverse.

While I tweet nearly everything I find (@cyclingscience1), here’s a summary of  a little of what I’ve learned this year from those thousands of diligent researchers who continue to add to our understanding of cycling.

I don’t necessarily agree with any of them.

• Yoga stresses the heart and respiratory system less than cycling
• The weaves of skinsuit materials affect your aerodynamics
• Bike reviews criticising comfort are largely untrustworthy
• Regenerative braking for e-bikes is going to blossom
• Cycling in London is either more dangerous or the safety models were wrong
• The Mayor of London is more worried about commerce than road safety
• Mountain bikers suffer the worst injuries in the first third of an endurance race
• French riders in the Tour de France live longer than mere French mortals
• Traffic calming and separate cycle paths make cycling safer in Netherlands
• Medics worldwide believe that bicycle helmets are fantastic
• The health benefits to US society of cycling outweigh the costs
• Caffeine definitely helps if you drink it, but not as a mouth rinse
• Cars don’t pass helmeted cyclists any closer than they pass bare-headed riders
• Steer by wire is on its way for e-bikes
• Support for, and research into, safety in numbers is growing
• Male cyclists have bigger thighs than triathletes
• The secrets of bicycle stability and steering remain enigmatic
• The best time to ride along Oxford Street in London is 10:07 on 25th DecemberOxford St cycling 25 Dec

To stay ahead of the bunch in 2014, buy a copy of Cycling Science and follow the tweets @cyclingscience1

How to Acquire a Third Testicle

30/04/2013

The public has spoken so don’t blame me. And it’s nothing to do with Flann O’Brien.

A few days ago I listed three topics I might cover in this post. One was on electromechanical systems for bicycle control. Another was about the dynamics of a peloton. However, both were outvoted by the third option – the medical phenomenon known, loosely, as the cyclist’s third testicle.

Of course, the phenomenon can only manifest itself among half of the world’s population (at most). Nevertheless, the other half, women, may have a vicarious interest and there’s no doubt that some men reading this are driven by similar prurience.

But how many men reading this actually possess the hat-trick of spheres? The chances are higher if you’re a full time, elite professional cyclist than if you’re an occasional leisure rider. It seems that the longer you’re in the saddle, the more likely you’ll develop the titular extra ball.

A cyclist's third testicleTo be absolutely honest, it’s not actually a testicle. Not having seen one in the flesh myself, and with no great urge so to do, I’d wager that it doesn’t even look much like a testicle. Yet medics, members of a profession to which we entrust our lives, have branded it a “testicle” so that’s how it shall be known.

In reality, it’s a perineal nodular induration. Before you go scrimmaging in your scrotum to see if that’s what you’ve got, you should know that it is a soft mass. It doesn’t hurt. It doesn’t transmit pain unless maltreated – and who’d want to maltreat such an innocent growth anyway?

It sits just beneath the scrotum. Sometimes it develops as two nodules (as nobody has yet applied the name “fourth testicle” I’ll claim that great privilege right now) but when it is undivided it’s called the third testicle.

The tenth anniversary of its recognition by doctors falls next month, when three (of course) researchers from Belgium published their seminal paper “Perineal Nodular Induration: The Third Testicle of the Cyclist: An Under-Recognized Pseudotumour”.

If you want a third testicle, get a road bike with a very stiff frame, pump the tyres so they are very hard, fit an extremely unforgiving saddle and cycle along a bumpy road for several years. The fatty or collageneous tissue of your perineum will eventually degenerate and form the pseudocyst that you are seeking.

It’s benign, even when it’s the size of an orange, like the one in the photo. Yet if, after you’ve gone to all the trouble of developing it, you find it’s not living up to your expectations, it can be removed. By a surgeon. With a sharp knife. And a steady hand.

*A full year after the above was posted, medics working in the UK have published a paper describing a similar case, in a 57 year old “avid” cyclist, in which they use a term I’d not seen before, “Biker’s Nodule”. You can read the abstract of “An avid cyclist presenting with a ‘third testicle'” here. I hope, for all cyclists’ sake, this isn’t the start of a trend…

School journeys and child fitness

15/10/2012

There were quite a few interesting replies to my tweets (@cyclingscience1) about recent papers that had been published in science journals and they have  prompted me to contact a scientist involved in the original research.

The paper that had got the most interest was about the fitness benefits for children who cycle to school. The original research was done by a team from the University of Granada, Spain and published in Preventive Medicine, August 2012.

In summary, it said that children who cycled to school in Sweden over a six year period were improved their fitness 20% more than those who walked. That’s understandable, particularly if they had hills on their routes.

The strangest fact, though, was that the cyclists were found to improve their fitness by only 13% more than children who went to school by “passive” modes (car, train, tram or bus) over six years.

So it would suggest that children who go to school in a car or other vehicle get 7% fitter than walkers.

Surely that can’t be right? Why should active walkers be less fit than the apparently inactive “passive” pupils?

A few ideas about this were mooted via tweets. Maybe children who travelled by car came from wealthier homes and so had healthier diets than the walkers? Maybe the walkers started out fitter at the beginning of the six year period and so couldn’t improve as much as “passive” children?

The best way to sort it out was to ask the paper’s lead author, Professor Palma Chillón Garzón at the unversity’s Department of Physical Education and Sport. Here’s his reply:

“It is correct that fitness increased lightly more among those who used passive modes than those who walked, but these differences are very small (fitness increased 1,289 in passive and 1,235 in walkers, and 1,488 in bikers).” [We assume a baseline fitness index of 1000 at the start of the six year period.]

So how does he explain the apparent fitness advantages of passive travel relative to walking?

“… there other variables that affect fitness like genetics, physical activity in the leisure time…etc.  For this reason, maybe young people who use passive modes to school might practice more physical activity in the leisure time than those who walked to school.”

The upshot is that the research set out to quantify the fitness improvements, not to explain the reasons. That’s another task. Who’s going to do it?

In the meantime, the more children who cycle to school, the better. Unfortunately, parents from different parts of the UK tweeted that their children’s schools didn’t allow them to cycle, even when staff are themselves cyclists.

Among the replies to the original tweet, one question remains unanswered: what proportion of children live within cycling distance of schools in southwest Pittsburgh? Any answers? Has that figure been worked out for any school? Cycle campaigners would find it very useful.